
The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

The SVD and some applications in digital image
processing

M. Dolores Martínez
e-mail: dolores.martinez@uv.es
Universitat de València. Spain

Javier Pastor
e-mail: pastorv@uv.es

Universitat de València. Spain

Abstract

Our purpose is to bring in the singular value descomposition of a matrix (SVD) to a
broad audience, showing that it provides a wide amount of interesting information about
the matrix. Moreover, we show that the SVD is an e¢ cient computational platform in
applications in digital image processing such as image watermarking, image compression
or image restoration.

1 Introduction

In order to realize of the importance, both theoretical and practical, of the singular value
decomposition of a matrix (SVD), it is enough to check, by means of a web browser as for
example Google, that the SVD plays a central role in a number of papers in recent years. In
the same direction, it is interesting to point out that Gilbert Strang designates the existence
of the SVD of a matrix and their consequences as �The fundamental theorem of linear algebra�
([8]).
There are several reasons which explain why the SVD has become a so useful decomposition

in numerical linear algebra:

1. It exists for any m� n complex matrix (although we focus our attention in real matrices
since an image can be represented by real matrices).

2. The SVD is achieved by unitary matrices.

3. Singular values of a matrix depend nicely from the matrix and they allow us to determine
e¢ ciently the numerical rank of the matrix.

4. There are powerful algorithms to compute the SVD.

5. Important insight about the matrix can be gained using the SVD as well as optimal
low-rank approximations to the matrix.

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

Some applications, which employ the SVD, include determining the rank, range and null
space of a matrix, matrix approximation, computing the pseudoinverse, least squares �tting of
data, linear inverse problems, and signal processing.
The theory of diagonalizing a real symmetric matrix is part of a �rst linear algebra course,

but it is not the case of the SVD. Nevertheless, as we shall see, the SVD is closely related to
the eigenvalue decomposition of a symmetric matrix. The existence of the SVD of an m � n
real matrix A (A 2 Rm�n) means that there are orthonormal basis for Rn and Rm, speci�cally
suited to each matrix, such that A has a diagonal representation relative to these basis. In
opposition to this result, it is a well-known fact that, in general, not every A 2 Rn�n has an
eigenvalue decomposition.
Our purpose is to introduce the SVD from some of its applications in digital image processing

to students who have received a �rst course in linear algebra and have some basic familiarity with
MATLAB. We shall make extensive use of MATLAB notation along the paper. We encourage
the reader to get information about the di¤erent MATLAB�s commands with the command
help. We give MATLAB simpli�ed functions for the di¤erent applications in image processing
presented in this paper, which can be downloaded from http://www.uv.es/pastorv/eJMT/.
The paper is organized as follows. In Section 2 we give a short introduction to handling of

digital images with MATLAB. The least signi�cant bit method for digital information hiding
is described in Section 3. The SVD is introduced in Section 4 as a consequence of well-known
symmetric eigenvalue problem. A SVD-based scheme digital watermarking is shown in Section
5. In Section 6 we analyze the problem of low rank approximation of a matrix and we introduce
an image compression scheme. In the last section, we deal with the problem of restoring a
blurred and noised image. The truncated singular value decomposition (TSVD) approach is
presented.
We �nish this section by introducing basic notation for matrices. The entries of A 2 Rm�n

are designated by A(i; j), 1 � i � m, 1 � j � n. A handy way to specify a column or a row is
the �colon�notation. Thus, A(:; j) designates the jth column of A, i.e.,

A(:; j) := [A(1; j);A(2; j); : : : ;A(m; j)] (1 � j � n);

and the ith row of A is designed by

A(i; :) := [A(i; 1); A(i; 2); : : : ; A(i; n)] (1 � i � m):

Thus, we can describe A by columns or by rows:

A = [A(:; 1); A(:; 2); : : : ; A(:; n)] = [A(1; :);A(2; :); : : : ;A(m; :)] :

We shall identify Rn with Rn�1. Moreover, A 2 Rm�n can be identify with the vector A(:
) � [A(:; 1);A(:; 2); : : : ;A(:; n)] 2 Rmn, and reciprocally, any vector v 2 Rmn can be interpreted
as an element of Rm�n (MATLAB�s command reshape has this purpose).

2 Managing images with MATLAB

In this section basic MATLAB commands to manipulate images are introduced through a
concrete example. We assume that MATLAB�s Image Processing Toolbox is available.

Administrator
Typewriter
327

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

(c)(a) (b)

Figure 1: (a) The original color image football; (b) The grayscale image obtained from the
green intensity; (c) The grayscale image obtained by means of command rgb2gray applied to
the original color image.

As we have installed MATLAB 7.0 in drive C, then in
C:nMATLAB7ntoolboxnimagesnimdemos

we can �nd some sample images. We have chosen as example the image called football which
is in JPEG format. By means of the command imshow we can display the images
>> imshow(�C:nMATLAB7ntoolboxnimagesnimdemosnfootball.jpg�)

In this case we can execute just command imshow(�football.jpg�) since MATLAB knows the
path �le. To work with our own images, it is more comfortable to change the current directory
in MATLAB to avoid writing each time the complete path �le.
The command to read the image and to store it in a variable A is
>> A = imread(0football:jpg0);
By executing command size(A) we get that in A we have a multidimensional array of size

256� 320� 3, since A represents a color image in RGB (Red-Green-Blue) format. The array A
can viewed as 3 matrices of the same size, 256�320, which represent the intensity in each pixel
of the three primary colors. For example, A(10; 50; 2) represents the green intensity of pixel in
position (10; 50). Grayscale images are represented by two-dimensional arrays or matrices.
If color is not an important feature, then rgb2gray can be used to change a color image into

a grayscale image (B=rgb2gray(A);). We can also get a grayscale image from the original by
C = A(:; :; 2); for instance. Of course B and C represents di¤erent images although both have
size 256� 320. In Figure 1 the three images we have mentioned are shown by using command
subplot.
The command imwrite allows us to write the grayscale picture B in the �le footballbn.jpg
>> imwrite(B;0 footballbn:jpg0)
By executing class(A) we realize that the elements in A are of type uint8, which means

that they are unsigned 8-bit integers, and therefore, they belong to the set [0; 255] \ Z (for
example, A(10; 50; 2) is 89). It is important to keep in mind that entries in the image arrays
belong to a �xed interval and that after performing some arithmetic operation with this kind
of values the result could fall outside of the interval, and this could produce an unexpected
result. Thus, if we want to operate on image A with mathematical methods, we must convert
A to the class double of real numbers in double precision by means of double(A). Of course,
to display the image obtained after some algebraic operation or to write it in a �le, we must
previously convert it to uint8 class by the command with the same name.
A binary image is a digital image that has only two possible values for each pixel, usually 0

Administrator
Typewriter
328

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

(c)
(a) (b)

Figure 2: (a) A binary version of football image; (b) A portion of original image football.jpg;
(c) Image with a Confucius�proverb

(black) or 1 (white). One way to get a binary image from a grayscale image is to use a threshold
level, for example 128. By
>> C = B > 128;

we convert the grayscale image in B to a binary image by replacing all pixels in the input
image with value greater than 128 with the logical value 1 and replaces all other pixels with
the logical value 0 (see also command im2bw). We show the binary image C in Figure 2.
The Windows program Paint can be used to get our own test images for example with some

text in it or a cutting of a small area of an existing image (the same can be done with command
imcrop). This is also shown in Figure 2.

3 Digital steganography: Hiding information in digital
images

Steganography is the art of writing hidden messages in such a way that no one, apart from the
sender and intended recipient, suspects the existence of the message. In digital steganography,
digital data, as plain text or an image, are embedded inside of a host �le, such as an innocent-
looking holiday image. The image obtained after hiding some information in a host image is
called a stegoimage. In any case, the digital data to be hidden is nothing else than a string
of bits, since by ASCII code each written character has a representation as a uint8 number
(8 bits). For example, symbol @ is 64 in ASCII and therefore in binary system with 8 bits is
01000000, while letter G is 71 in ASCII which is �nally represented by the byte 01000111. The
following MATLAB function converts text into a binary sequence.

function r=string2bin(q)
% q is a string of plain text; for example �Mens sana in corpore sano�
% r is a vector representing q as a sequence of zeros and ones
r=uint8(q); % To get the ASCII code of each character in q
r=dec2bin(r,8); % To convert integers between 0 and 255 to binary with 8 bits
r=r�;r=r(:); % To get a vector of characters zeros and ones representing q
r=uint8(r==49); % To convert each character to integers 0 and 1

Administrator
Typewriter
329

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

Least signi�cant bit (LSB) insertion is a common, simple approach to embedding infor-
mation in a cover �le. Basically, LSB consists of using the least signi�cant bit of each unsigned
integer of 8 bits we have in a digital image to hide a bit of the message to be hidden. For
example, we hide bit 0 in byte 11000111 by changing it to byte 11000110. The human eye is
not able to discern this change in the intensity of a pixel. The MATLAB function stega embeds
a binary sequence into a grayscale image.

function A=stega(A,r)
% A grayscale host image
% r vector of 0�s and 1�s to hide into A(:) by means of LSB
[m,n]=size(A); l=length(r);
if l<=m*n % We check that the image is large enough to hide r

i=1;
while i<=l

A(i)=bitset(A(i),1,r(i)); % To change the least signi�cant bit
i=i+1;

end
else

error(�Not enough space to embed the message.�)
end

To extract the hidden message we use the function undo_stega.

function q=undo_stega(A)
% A stegoimage with a message hidden by LSB method in A(:)
% q extracted message
c=2*ones(1,8)).^[7:-1:0]; % To change basis
i=1; j=1;
while i+7<=prod(size(A))

r=bitget(A(i:i+7),1); % To get last bit of each 8 entry set
q(i)=sum(r.*c); % Conversion from binary with 8 bit to integer
i=i+8; j=j+1;

end
q=char(q); % Integer to character conversion. The message is at the beginning

By combining our functions string2bin and stega we hide the text �Mens sana in corpore
sano�in the red intensity of a apparently �innocent�RGB image with LSB method (see Figure
3). The extracted text by our function undo_stega is exactly the original one.
Unfortunately, LSB is vulnerable to even a slight image manipulation. For example, if we

add 1% Gaussian noise to the stegoimage by means of

E = randn(size(A));% A is the stegoimage

A = uint8(double(A) + 0:01 � E � norm(double(A(:)))=norm(E(:)));

Administrator
Typewriter
330

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

(a) (b) (c)

Figure 3: (a) Host image; (b) Stegoimage with a hidden message in the red intensity; (c) Image
obtained by adding 1% Gaussian noise to the stegoimage.

where the command norm gives the Euclidean norm of a vector, and then we try to recover
the hidden message, we get a text with no relationship with the original one. The beginning of
the extracted text in this case could be the string �C } ø Ü ^Z ,�, for instance.
In Section 5 we shall introduce a SVD-steganography scheme which is shown to be more

sturdy to general image processing.

4 The singular value decomposition

The SVD �rst appeared in a paper by Eugenio Beltrami (1873) in the context of bilinear
forms. His proof of the existence of the decomposition shows that it is closely related with the
eigenvalue decomposition of the symmetric semide�nite positive ATA (or AAT), where AT is
the transpose of A. The interested reader in the historical development of the SVD can �nd
much more details in the nice paper [7].
Recall that if A 2 Rn�n is symmetric, there is a P 2 Rn�n orthogonal matrix (P TP = In,

where In is the identity matrix), such that D := P TAP is diagonal. In others words, fP (:
; i)gni=1 is an orthonormal basis of eigenvectors of A for Rn, and the diagonal entries of D are
the eigenvalues of A. It is easy to show that not every real square matrix admits a so nice
kind of basis from which the linear transformation represented by A has a diagonal matrix
representation, the simplest possible form. Surprisingly, for every linear transformation from
Rn to Rm there are suitable orthonormal basis in the initial and the �nal spaces, usually di¤erent
even when n = m, from which the linear transformation has a diagonal matrix representation.
This is nothing else than a SVD of a m� n real matrix.

De�nition 1 The singular value decomposition of A 2 Rm�n, for short SVD, is a factorization
of the form

A = U�V T ;

where U 2 Rm�m and V 2 Rn�n are orthogonal, and � 2 Rm�n is diagonal such that, if
diag(�) = [�1;�2; : : : ;�p], p := minfm;ng, then

�1 � �2 � � � � � �p � 0.

Administrator
Typewriter
331

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

The diagonal entries of � are known as the singular values of A. The columns of U; ui := U(:; i)
(1 � i � m), and the columns of V , vi := V (:; i) (1 � i � n), are called left-singular vectors
and right-singular vectors of A, respectively.

Let us suppose that a SVD of A exists. Then, it is not hard to get the SVD expansion

A =
sX
j=1

�jujv
T
j ; (1)

where s 2 f0; 1; : : : ; pg is the number of non-zero singular values. This expansion will lead us
to a SVD-based image compression scheme in Section 6.
Moreover, from (1), we easily obtain

Avk = �kuk (1 � k � s); Avk = 0 (s+ 1 � k � n); (2)

and
ATuk = �kvk (1 � k � s); ATuk = 0 (s+ 1 � k � m):

Thus
ATAvk = �

2
kvk (1 � k � s); ATAvk = 0 (s+ 1 � k � n);

which implies that the left-singular vector vk are eigenvectors of ATA, and that singular values
are the positive square roots of the p-�rst, in decreasing order, eigenvalues of ATA. This fact
suggests a proof of the existence of the SVD for any matrix based in the eigenvalue decompo-
sition of ATA. The matrix ATA 2 Rn�n is symmetric and positive-semide�nite. Consequently,
there exists an orthonormal basis for Rn of eigenvectors associated to ATA, being the eigenval-
ues of ATA non-negative.
Let f�2jgnj=1, �j � 0 (1 � j � n), �1 � �2 � � � � � �n � 0, the eigenvalues of ATA. Let

fvjgnj=1 a orthonormal basis for Rn with ATAvj = �2jvj (1 � j � n). Of course, we get the
right-singular vectors from (2), i.e., uj := Avj=�j (1 � j � s). The key point to complete
the proof of the existence of a SVD of A is to show that fujgsj=1 is an orthonormal set, but a
simple calculation shows that uTi uj = �ij (1 � i; j � s). In case s < m; we complete fujgsj=1
to an orthonormal basis fujgmj=1 of Rm, even though, as the SVD expansion shows, the added
vectors fujgmj=s+1 are only necessary to complete the dimension, but they make no contribution
to A. Recall that this completion can be done by means of the Gram-Schmidt process.
In short, we have outlined the proof of the following result.

Theorem 2 Every rectangular real matrix has a SVD.

It is worth to point out that also complex matrices have a SVD, but in this case U and V
are unitary transformations.

Example 3 Let us obtain a SVD of A = [0; 1;�1; 0;�1; 1] 2 R3�2 by the process followed to
prove the existence of a SVD of A. We have ATA = [2;�1;�1; 2] with 3 and 1 as eigenvalues
with eigenvectors [�1; 1] and [1; 1] ; respectively. Thus, singular values are �1 =

p
3 and �2 =

1; and we take v1 = [�1; 1] =
p
2 and v2 = [1; 1] =

p
2. As Av1 = [1; 1; 2] =

p
2 and Av2 =

Administrator
Typewriter
332

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

[1;�1; 0] =
p
2; we de�ne u1 = [1; 1; 2] =

p
6 and u2 = [1;�1; 0] =

p
2. Finally, we complete fujg2j=1

to an orthonormal basis for R3. In this simple case, we can take u3 = [1; 1;�1] =
p
3 since it

is orthogonal to u1 and u2, and its Euclidean norm is 1. A simple calculation shows that
A = U�V T :

From the numerical point of view, it is not suitable to get a SVD of A by forming ATA,
since the errors in the calculation of ATA in limited precision can lead to a severe loss of
information. For example, if we consider the invertible matrix A = [1; 1; 0; 10�8], then when
we form the matrix ATA with MATLAB we get the singular matrix ones(2), which gives 0 as
smallest singular value instead of 10�8=

p
2. Thus, a maximum absolute error of 10�16 in the

calculation of entries of ATA gives an absolute error in the calculation of �2 of 10
8
p
2 times

bigger. The interested reader in computational issues regarding the SVD can �nd more details
in [2, Section 8.6]. In MATLAB we can use the command svd to calculate a SVD of a matrix.
From the previous analysis it is clear that the singular values are uniquely determined but

in general the SVD is not unique. Nevertheless, in the case of distinct singular values, the SVD
is unique up to sign of the columns of U and V .
A SVD of a matrix provides of a good insight about its structure. Among other information,

it is not hard to show that it provides us with the main two subspaces related to A

range(A) = hfuigsi=1i , ker(A) =

fvigni=s+1

�
;

their orthogonal complements

range(A)? =

fuigmi=s+1

�
; ker(A)? := hfvigsi=1i ;

and the rank of the matrix rank(A) := dim(range(A)) = s.

5 A SVD-based digital steganography scheme

In this section we go back to digital steganography, by introducing a block SVD technique to
embed binary information into the biggest singular value of each block of a grayscale host image
by a quantization process ([9]), which can resist general image processing better than the LSB
method. We show here the simpli�ed version proposed in [6].
The host image is split into non-overlapped blocks of size 2� 2. For simplicity, let S be one

of these blocks. We get a SVD of S: S = U�V T . Then write �1 � �1(S) = c � 10 + r with
c a non-negative integer and 0 � r < 10. For an embedded watermark bit valued of 0, if c is
even de�ne c� := c and otherwise c� := c � 1. Thus, in this case the �nal value of c� is even.
For an embedded watermark bit valued of 1, if c is odd de�ne c� = c and otherwise c� := c+1.
Therefore, in this case the �nal value of c� is odd. Finally, de�ne ��1 := c�10 + 5, ��2 := �2,
and replace S by S� = U diag([��1;�

�
2])V

T in the same position in the original image to get the
stegoimage. The MATLAB function stega_SVD implements this process.

function A=stega_SVD(A,r)
% A grayscale host image
% r vector of �0�s and �1�s to be hidden into A

Administrator
Typewriter
333

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

[m,n]=size(A); s=�oor(n/2); t=�oor(m/2); l=length(r);
if s*t<l % We check that the image is large enough to hide r

error(�Not enough space in host image�)
else k=1;

for i=1:2:2*t-1
for j=1:2:2*s-1

[U,S,V]=svd(double(A(i:i+1,j:j+1)));
c=�oor(S(1,1)*0.1);
if r(k)==0

if c/2~=�oor(c/2)
c=c-1; % Thus, c is even

end
else

if c/2==�oor(c/2)
c=c+1; % Thus, c is odd

end
end
S(1,1)=c*10+5;
A(i:i+1,j:j+1)=uint8(U*S*V�);
k=k+1;
if k==l+1

return % r is already hidden into A
end

end
end

end

To recover the hidden binary information we give the following code.

function r=undo_stega_SVD(A)
% r vector containing the binary info hidden in the stegoimage A
[m,n]=size(A); A=double(A); s=�oor(n/2); t=�oor(m/2); k=1;
for i=1:2:2*t-1

for j=1:2:2*s-1
S=svd(double(A(i:i+1,j:j+1))); % vector with the singular values
c=�oor(S(1,1)*0.1);
if c/2==�oor(c/2) % c is even

r(k)=0;
else

r(k)=1;
end
k=k+1;

end
end

Administrator
Typewriter
334

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: (a) Host image yacht; (b) Binary watermark; (c) Watermarked image; (d) Extracted
watermark (correlation 1); (e) Watermarked image attacked with 2% additive Gaussian noise;
(f) Extracted watermark from image (e) (correlation 0.8345).

As the reader can check, this technique based in SVD is able to resist image processing, as
for example Gaussian noise addition, better than LSB insertion method.
In Figure 4 we show the results of applying this scheme to watermark the red intensity of

yacht color image with a binary version of logo of University of Valencia (https://www.uv.es)
obtained by applying command im2bw. Of course, we could hide more than one copy of the
watermark in the three intensities of the color host image and thus we could get more extracted
watermarks. In this case we would keep the most correlated with the original watermark of all
them. Of course, to extract the watermark we need to know its size. The extracted watermark
under a previous attack of the watermarked image with the addition of 1% Gaussian noise is
exactly the original one. Nevertheless, with 2% Gaussian noise the result is not so good. We
compare the extracted watermark and the original one by calculating the correlation coe¢ cient
between both vectors.

6 Reduced rank approximations of a matrix and image
compression

The SVD expansion (1) suggests a way to approximate a matrix and save storage. To form A
by using (1) we have to store f�i; ui; vigsi=1, i.e., s(m+n+1) real numbers instead of the original
mn entries of A. Clearly, this is not always an advantage. However, one could guess that by

Administrator
Typewriter
335

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

summing in (1) to a positive index k < s, we possibly could obtain a good approximation of
A, resulting in saving of storage space.
In order to compare matrices we need a notion of distance between matrices. The notion

of matrix norm is completely analogue to the notion of vector norm and provides a measure
of distance on the space of matrices (for more details see [2] or [4]). Probably, the most used
matrix norms in numerical linear algebra are the Frobenius norm which is de�ned as

kAkF := kA(:)k2 =

nX
j=1

kA(:; j)k22

!1=2
= trace(ATA)1=2 (A 2 Rm�n);

where kxk2 := (xTx)1=2, x 2 Rk, and the spectral norm,

kAk2 := max
kxk2=1

kAxk2 (A 2 Rm�n):

The Frobenius norm has the advantage of being easily computed from entries of the matrix,
while the spectral norm is based in the interpretation of A as a linear transformation and we
will show that it coincides with the �rst singular value of A (the spectral norm belongs to
the family of subordinated matrix norm or operator norm). Nevertheless, the spectral norm is
also easy to compute for some special kind of matrices. For example, if A 2 Rm�n is diagonal
(A(i; j) = 0 when i 6= j), then

kAk2 = max
1�i�min(m;n)

jA(i; i)j .

Of course, both matrix norms are equivalent. In fact, it is not di¢ cult to show that

kAk2 � kAkF �
p
rank(A) kAk2 (A 2 Rm�n):

As it is easily veri�ed, both matrix norms satisfy very important properties. Both norms
are submultiplicative

kABkt � kAkt kBkt (A 2 Rm�n, B 2 Rn�s, t = 2; F);

and both are invariant with respect to orthogonal transformations: If A 2 Rm�n and P 2 Rm�m
and Q 2 Rn�n are orthogonal, then

kPAQkt = kAkt (t = 2; F):
From this property we have

kAk2 = �1 =
AT

2
, kAk2F =

pX
i=1

�2i ;

showing that the relation of singular values with the spectral norm is more direct. Moreover,
if m = n, then, A is invertible if, and only if, �n > 0; and in this case kA�1k2 = ��1n .
The important number in perturbation theory of simultaneous linear equations, called spectral
condition number of a invertible matrix A, k2(A) := kAk2 kA�1k2, coincides with �1=�n:

Administrator
Typewriter
336

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

As it is easily checked,
ujvTj 2 = kujk2 kvjk2 = 1, 1 � j � s. Thus, we could say that

the �rst addends of the SVD expression of A have more contribution in forming A, due to the
selected order of the singular values.
In order to shorten the paper, we omit the proof of the following low rank approximation

theorem ([2, Theorem 2.5.3]). A similar result for the Frobenius norm can be found in [7].

Theorem 4 Let A 2 Rm�n, with rank(A) = s � 1. Let A = U�V T be a SVD of A. Consider

Ak :=

kX
j=1

�jujv
T
j (1 � k � s� 1): (3)

Then

�k+1 = kA� Akk2 = min
�
kA�Bk2 : B 2 Rm�n, rank(B) � k

	
(1 � k � s� 1).

As a straightforward consequence we have the condition number is a measure of the distance
of the matrix to the set of singular matrices.

Corollary 5 Assume that A 2 Rn�n is invertible. Then

1

k2(A)
= min

�
kA�Bk2
kAk2

: B 2 Rn�n is singular
�
.

With no doubt, one of the main consequences of the approximation theorem is the nice
dependence of singular values from the matrix. Thus, the SVD can be used as a numerically
reliable estimate of the e¤ective rank of a matrix (see [2] for the notion of numerical rank). The
MATLAB command rank, to calculate the rank of a matrix, is based on the SVD.

Corollary 6 Let A, B 2 Rm�n and let p = minfm;ng. Then

j�k(A)� �k(B)j � kA�Bk2 (1 � k � p).

Let us then to introduce a image compression technique based on the idea outlined at the
beginning of the section: Ak is considered as an approximation of A with k 2 f0; : : : ; s =
rank(A)g chosen by the user. The relative error in the spectral norm is

er :=
kA� Akk2
kAk2

=
�k+1
�1

;

and the ratio of compression is

rc :=
k(m+ n+ 1)

mn
;

since only the k �rst singular values and the k �rst left and right singular vectors are needed
to form Ak from (3). The following MATLAB function gives Ak, er and rc, from arguments U ,
S, V , which represent a SVD of the image, and k.

Administrator
Typewriter
337

Administrator
Typewriter

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

(a) (b)

(d)(c)

Figure 5: (a) Original Image; (b) k=10, er=0.0661, rc=0.0103; (c) k=50, er=0.0242, rc
=0.0514; (d) k=100, er=0.0145, rc=0.1027.

function [B,er,rc]=lr_aprox(U,S,V,k)
[m,n]=size(S);
er=S(k+1,k+1)/S(1,1);
rc=k*(m+n+1)/(m*n);
B=uint8(U(:,1:k)*S(1:k,1:k)*V(:,1:k)�);

As an example we have chosen a 1704� 2272 grayscale image and the results are shown in
Figure 5. With an approximation of rank k = 100 one can recognize the main features of the
original image. For example, the place where the picture was taken is easily identi�ed: The
Academie Nationale de Musique (Paris). In this case, only around 10% of the original storage
space is needed. This scheme can be applied to color images by compressing each intensity of
primary color separately and then inserting them in a new multidimensional array.

Administrator
Typewriter
338

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

7 A simple image deblurring problem

Di¤erent reasons can cause a recorded image to not represent an ideal scene that is sharp and
useful, including an out-of-focus camera lens, atmospheric turbulences, movement of the camera
or the object while the shutter is open, etc. Thus, it is unavoidable that scene information
spreads to neighboring pixels and hence, the result is that we record a blurred image. If we
know the blurring process, then we can try to recover some details about the original image
hidden in the blurred image. This matter is usually referred to as the image deblurring problem.
The general issues of these kind of problems can be found in [5] or in the excellent book [3],

where the interested reader can expand the basic model we present in this section.
To start, we consider vertical motion blur under zero boundary conditions. Each pixel

intensity spreads over uniformly to r vertical adjacent pixels. To describe this process, we
look for a matrix Av such that, if z = Avx, then z(i) is the arithmetic mean of r components
of vector x adjacent to component x(i) by both sides. In our model we assume the simplest
boundary condition, in which one supposes that the exact image is black (zero pixels) outside
the boundary. Here it is the code to get Av 2 Rn�n from an odd r.

function A=blur_vertical(n,r)
% r is chosen odd by simplicity; n is the size of the matrix A
% zero boundary condition
A=ones(n)/r; s=(r-1)/2; A=tril(triu(A,-s),s);

IfX 2 Rm�n represents the ideal grayscale scene that we are trying to capture andB 2 Rm�n
represents the recorded image under vertical motion blur, they are related by the equation
B = AvX, where Av 2 Rm�m has been described before. We can also modelize horizontal
motion blur by multiplying X to the right by Ah 2 Rn�n, where Ah follows the same pattern of
Av but likely associated to a di¤erent r. Thus, the �nal relation to describe both motion blur
in the recorded image is

B = AvXAh; (4)

where Av and Ah modelize vertical and horizontal motion blur, respectively. To rewrite this
product of matrices as a matrix by vector product we use the Kronecker product which for
S 2 Rn�n and T 2 Rm�m is the matrix S
 T 2 Rmn�mn given by

S
 T :=

264 S(1; 1)T : : : S(1;m)T
...

...
...

S(m; 1)T : : : S(m;m)T

375 :
It is not hard to show that

(S
 T)X(:) = (TXST)(:) (X 2 Rm�n):

Therefore, (4) can be written as
Axexact = bexact;

where bexact := B(:), A := ATh
 Av 2 Rmn�mn is the blurring matrix and xexact := X(:).

Administrator
Typewriter
339

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

(a) (b)

(c) (d)

Figure 6: (a) Original Image; (b) Vertical motion blur with r = 7; (c) Horizontal motion blur
with r = 9; (d) Simultaneous vertical (r = 7) and horizontal (r = 9) motion blur.

Here we include a MATLAB function to get the Kronecker product of two matrices.

function A=kronecker(S,T)
[m,s]=size(S); [n,s]=size(T); C=[]; A=[];
for j=1:m

for i=1:m
C=[C;S(i,j)*T];

end
A=[A,C]; C=[];

end

In Figure 6 (d) there is an example of motion blur applied to a grayscale image of size
27� 66. Observe the presence of a black boundary consequence of zero boundary condition in
our model. The blurring matrix A is square of size N = 1782 and, although it is invertible,
it is a badly conditioned for �1=�N = 3:0823e + 018, which alerts us that a system of linear
equations with A as the coe¢ cient matrix is very ill-conditioned; that is, the solution of the
system is severely sensitive to small changes in the input data.
Hence, in the abstract scheme we have a large blurring matrix A 2 RN�N , bexact 2 RN as

the blurred image, and xexact 2 RN as the original image, not available, related by the linear
model

Axexact = bexact:

In Figure 7 we show the result of solving this system in our example by standard techniques.
In addition to blurring, the recorded images are usually contaminated with noise due to

the use of a mechanical device to capture images and to digitalization. Let E 2 Rm�n be
the noise image and de�ne e := E(:). Then, the noisy blurred image is represented by vector
b = bexact + e. Accordingly, in practice we have to solve the linear very ill-posed perturbed
problem

Ax = b (5)

Administrator
Typewriter
340

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

(a) (b)

Figure 7: (a) Blurred image; (b) Theoretical solution A�1bexact

(a) (b)

Figure 8: (a) Available blurred and noise-contaminated image (1% Gaussian noise); (b) Naive
reconstruction.

in order to recover the main features of the ideal scene.
As A is invertible, the theoretical solution of the perturbed system of equations can be easily

obtained from a SVD of A. Indeed, if A = U�V T is a SVD, then the solution of (5) is

xnaive := A
�1b = V ��1UT b =

NX
i=1

uTi b

�i
vi = xexact +

NX
i=1

uTi e

�i
vi;

being the last term the inverted noise contribution to the solution.
It is interesting to note that for rank de�cient matrix A, the solution of (5) in the sense of

least squares, i.e., which minimizes the function x 2 RN ! kAx� bk22, of minimum Euclidean
norm, is given by the SVD expansion

Prank(A)
i=1 ��1i u

T
i b vi ([2, Theorem 5.5.3]).

In Figure 8 we have the naive solution associated to the image obtained by adding 1%
Gaussian noise to our motion blurred image. It is beyond the scope of this paper to go further
into the underlying theory which explains why, even without noise, we get a so bad result.
Roughly speaking, the naive solution is completely dominated by the error term due to the SVD
components corresponding to the smallest singular values, making it useless. Since the singular
values are ordered decreasingly, we can remove the smallest ones by truncation. The resulting
method is called truncated singular value decomposition (TSVD), where, for 1 � k � N , the
associated approximate solutions of (5) are given by

xk :=
kX
i=1

uTi b

�i
vi:

The following MATLAB code gives truncated solutions.

Administrator
Typewriter
341

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

(a) (b) (c)

Figure 9: Several TSVD solutions: (a) k=100; (b) k=600; (c) k=1300.

function x=tsvd(U,S,V,b,k)
% A=U*S*V�is the blurring matrix
x=V(:,1:k)*diag(diag(S(1:k,1:k)).^(-1))*U(:,1:k)�*b;

In Figure 9 we can see three TSVD solutions xk of our image deblurring and denoising test
problem. Observe that as k goes from small to large values, the corresponding solutions range
from oversmoothed to undersmoothed, being (b) the reconstruction visually more pleasant.
Of course, the regularization parameter choice is the crucial and more delicate point in

regularization methods. When a good estimate of the norm of the noise, kek2 � � , is available,
the discrepancy principle suggests that the selected parameter k in TSVD should satisfy

kAxk � bk2 = (
NX

i=k+1

��uTi b��2)1=2 � c�;
where c > 1 is a user-supplied constant ([3]). Thus, the parameter is sought that provides
a residual of the same magnitude as the noise in the data. For TSVD the residual norm is
monotonically nonincreasing. Thus, we can systematically increase k from 1 to N until the
condition is achieved. The code tsvd_discrep implements TSVD with truncation parameter
selected by discrepancy principle.

function [x,k]=tsvd_discrep(U,S,V,b,c,delta)
[m,n]=size(S); r=norm(U�*b); k=0;
while r>c*delta & k<=m

k=k+1;
r=sqrt(r^2-(U(:,k)�*b)^2);

end
x=tsvd(U,S,V,b,k);

The Generalized Cross Validation (GCV) is another parameter choice method. The advan-
tage is that we do not need a priory estimate of noise (see [1] for a detailed analysis of this
principle). In GCV for TSVD the truncation parameter is found as the minimum of the discrete
function

G(k) :=

PN
i=k+1(u

T
i b)

2

(N � k)2 (1 � k < N):

Here we include a MATLAB function for this parameter choice criterion.

Administrator
Typewriter
342

Administrator
Typewriter

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

(a) (b)

Figure 10: (a) TSVD with discrepancy principle with c=1.01 and delta=0.01*norm(b) (k=450);
(b) TSVD with GCV (k=576);

function [x,k]=tsvd_gcv(U,S,V,b)
[m,n]=size(S);
r=norm(U�*b)^2;
for i=1:m-1

r=r-(U(:,i)�*b)^2;
c(i)=r/(m-i)^2;

end
[no_use,k]=min(c);
x=tsvd(U,S,V,b,k);

The results of applying TSVD to the our noisy blurred test image with both parameter
choices are shown in Figure 10.

8 Concluding remarks

These notes are intended to introduce the SVD of a matrix from a practical point of view,
showing some of its applications in the �eld of digital image processing. They are accessible to
undergraduate students who have followed the usual topics of a �rst linear algebra course and
have a basic knowledge of MATLAB.
It is worth to highlight that the SVD exists for every complex matrix and provides the most

prominent features of the matrix. Moreover, the main properties of the SVD can be exploited
in image processing.
In order to make it easier for the interested reader to be able to experiment with the

algorithms related with the proposed applications, we have included MATLAB simpli�ed codes
which are also available online.
Along the paper it has often been necessary to omit interesting details, but we encourage the

reader to consult the references for a more thorough treatment of the SVD and its applications.

Acknowledgements. The authors are very grateful to the referee for valuable comments and
corrections.

Administrator
Typewriter
343

Administrator
Typewriter

The Electronic Journal of Mathematics and Technology, Volume 7, Number 4, ISSN 1933-2823

The second author is indebted to José A. Vallejo for his kind invitation to the Fourth
Summer School UVEG-UASLP held at Universidad Autónoma of San Luis Potosí (México).
His research was supported by Universitat de Valencia, grants UV-INV EPDI12-67375 and
UV-RI_IP11-76088.

References

[1] G. H. Golub, M. Heath and G.Wahba, Generalized cross-validation as a method for choosing
a good ridge parameter, Technometrics, Vol. 21, no 2, 1979.

[2] G. H. Golub, C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, Third Edition, 1996.

[3] P. C. Hansen, J. Nagy, and D. P. O�Leary, Deblurring images. Matrices, Spectra and Filter-
ing, SIAM, 2006.

[4] R. A. Horn and C. R. Jhonson, Matrix Analysis, Cambridge University Press, 1985.

[5] R. C. Puetter, T. R. Gosnell and A. Yahil, Digital Image reconstrution: Deblurring and
denoising, Annu. Rev. Astron. Astrophys., 2005, 43:139�194.

[6] A. Rojas, A. Cano, Trabajando con imágenes digitales en clase de Matemáticas, Gaceta de
la Real Sociedad Matematica Española, Vol. 13, No 2, 2010 , págs. 317-336.

[7] G. W. Stewart, On the Early History of the Singular Value Decomposition, SIAM Review,
Vol. 35, No. 4 (Dec.,1993), 551-566.

[8] G. Strang, The fundamental theorem of Linear Algebra, American Mathematical Monthly,
100(9), pp. 848�855, 1993.

[9] R. Sun, H. Sun and T. Yao, A SVD and quantization based semi-fragile watermarking
technique for image authentication. Proc. Internat. Conf. Signal Process. 2, 2002, 1952�
1955.

Administrator
Typewriter
344

